Unify O(sqrt(N)) is_prime functions under project_euler (#6258)
* fixes #5434 * fixes broken solution * removes assert * removes assert * Apply suggestions from code review Co-authored-by: John Law <johnlaw.po@gmail.com> * Update project_euler/problem_003/sol1.py Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
@@ -25,32 +25,46 @@ After that, bruteforce all passed candidates sequences using
|
||||
The bruteforce of this solution will be about 1 sec.
|
||||
"""
|
||||
|
||||
import math
|
||||
from itertools import permutations
|
||||
from math import floor, sqrt
|
||||
|
||||
|
||||
def is_prime(number: int) -> bool:
|
||||
"""
|
||||
function to check whether the number is prime or not.
|
||||
>>> is_prime(2)
|
||||
True
|
||||
>>> is_prime(6)
|
||||
"""Checks to see if a number is a prime in O(sqrt(n)).
|
||||
|
||||
A number is prime if it has exactly two factors: 1 and itself.
|
||||
|
||||
>>> is_prime(0)
|
||||
False
|
||||
>>> is_prime(1)
|
||||
False
|
||||
>>> is_prime(-800)
|
||||
False
|
||||
>>> is_prime(104729)
|
||||
>>> is_prime(2)
|
||||
True
|
||||
>>> is_prime(3)
|
||||
True
|
||||
>>> is_prime(27)
|
||||
False
|
||||
>>> is_prime(87)
|
||||
False
|
||||
>>> is_prime(563)
|
||||
True
|
||||
>>> is_prime(2999)
|
||||
True
|
||||
>>> is_prime(67483)
|
||||
False
|
||||
"""
|
||||
|
||||
if number < 2:
|
||||
if 1 < number < 4:
|
||||
# 2 and 3 are primes
|
||||
return True
|
||||
elif number < 2 or number % 2 == 0 or number % 3 == 0:
|
||||
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
|
||||
return False
|
||||
|
||||
for i in range(2, floor(sqrt(number)) + 1):
|
||||
if number % i == 0:
|
||||
# All primes number are in format of 6k +/- 1
|
||||
for i in range(5, int(math.sqrt(number) + 1), 6):
|
||||
if number % i == 0 or number % (i + 2) == 0:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user