Files
Python/maths/numerical_analysis/weierstrass_method.py

98 lines
2.9 KiB
Python
Raw Normal View History

from collections.abc import Callable
import numpy as np
def weierstrass_method(
polynomial: Callable[[np.ndarray], np.ndarray],
degree: int,
roots: np.ndarray | None = None,
max_iter: int = 100,
) -> np.ndarray:
"""
Approximates all complex roots of a polynomial using the
Weierstrass (Durand-Kerner) method.
Args:
polynomial: A function that takes a NumPy array of complex numbers and returns
the polynomial values at those points.
degree: Degree of the polynomial (number of roots to find). Must be 1.
roots: Optional initial guess as a NumPy array of complex numbers.
Must have length equal to 'degree'.
If None, perturbed complex roots of unity are used.
max_iter: Number of iterations to perform (default: 100).
Returns:
np.ndarray: Array of approximated complex roots.
Raises:
ValueError: If degree < 1, or if initial roots length doesn't match the degree.
Note:
- Root updates are clipped to prevent numerical overflow.
Example:
>>> import numpy as np
>>> def check(poly, degree, expected):
... roots = weierstrass_method(poly, degree)
... return np.allclose(np.sort(roots), np.sort(expected))
>>> check(
... lambda x: x**2 - 1,
... 2,
... np.array([-1, 1]))
True
>>> check(
... lambda x: x**3 - 4.5*x**2 + 5.75*x - 1.875,
... 3,
... np.array([1.5, 0.5, 2.5])
... )
True
See Also:
https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method
"""
if degree < 1:
raise ValueError("Degree of the polynomial must be at least 1.")
if roots is None:
# Use perturbed complex roots of unity as initial guesses
rng = np.random.default_rng()
roots = np.array(
[
np.exp(2j * np.pi * i / degree) * (1 + 1e-3 * rng.random())
for i in range(degree)
],
dtype=np.complex128,
)
else:
roots = np.asarray(roots, dtype=np.complex128)
if roots.shape[0] != degree:
raise ValueError(
"Length of initial roots must match the degree of the polynomial."
)
for _ in range(max_iter):
# Construct the product denominator for each root
denominator = np.array([root - roots for root in roots], dtype=np.complex128)
np.fill_diagonal(denominator, 1.0) # Avoid zero in diagonal
denominator = np.prod(denominator, axis=1)
# Evaluate polynomial at each root
numerator = polynomial(roots).astype(np.complex128)
# Compute update and clip to prevent overflow
delta = numerator / denominator
delta = np.clip(delta, -1e10, 1e10)
roots -= delta
return roots
if __name__ == "__main__":
import doctest
doctest.testmod()