Files
PetriNet-Path-Planning-Base…/基于Petri网的蚁群算法代码.txt
2021-10-17 22:52:24 +08:00

211 lines
10 KiB
Plaintext

附录C 基于蚁群算法的时延库所Petri网路径规划代码
1. clc
2. clear
3. %%初始化标识和节点变迁%%
4. nodes_data=cell(0);
5. M_1=[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; %网中25个标识对应的符号
6. M_2=[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
7. M_3=[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
8. M_4=[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
9. M_5=[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
10. M_6=[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
11. M_7=[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
12. M_8=[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
13. M_9=[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
14. M_10=[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
15. M_11=[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
16. M_12=[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0];
17. M_13=[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0];
18. M_14=[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0];
19. M_15=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0];
20. M_16=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0];
21. M_17=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0];
22. M_18=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0];
23. M_19=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0];
24. M_20=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0];
25. M_21=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0];
26. M_22=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0];
27. M_23=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0];
28. M_24=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0];
29. M_25=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
30. nodes_data(1,:)={1,[2,3],[1,1],[M_2;M_3]}; %根据变迁的邻近变迁的发生权构造变迁元胞组(其中第二列代表此变迁发生后哪些变迁会发生,第三列代表此变迁到下一个变迁需要走过的路径距离,第四列代表此变迁到下一个变迁之后标识会更新到什么状态)
31. nodes_data(2,:)={2,[4,5],[1,sqrt(2)],[M_4;M_5]};
32. nodes_data(3,:)={3,[6],[1],[M_6]};
33. nodes_data(4,:)={4,[7,8],[sqrt(2),1],[M_7;M_5]};
34. nodes_data(5,:)={5,[9,10],[sqrt(2),1],[M_8;M_7]};
35. nodes_data(6,:)={6,[11,12],[1,sqrt(2)],[M_9;M_10]};
36. nodes_data(7,:)={7,[13,14],[1,1],[M_8;M_13]};
37. nodes_data(8,:)={8,[9,10],[sqrt(2),1],[M_8;M_7]};
38. nodes_data(9,:)={9,[15],[1],[M_18]};
39. nodes_data(10,:)={10,[13,14],[1,1],[M_8;M_13]};
40. nodes_data(11,:)={11,[16,17],[1,1],[M_10;M_11]};
41. nodes_data(12,:)={12,[18],[1],[M_12]};
42. nodes_data(13,:)={13,[15],[1],[M_18]};
43. nodes_data(14,:)={14,[23,24],[sqrt(2),1],[M_14;M_15]};
44. nodes_data(15,:)={15,[29],[1],[M_19]};
45. nodes_data(16,:)={16,[18],[1],[M_12]};
46. nodes_data(17,:)={17,[19,20],[1,sqrt(2)],[M_16;M_17]};
47. nodes_data(18,:)={18,[21,22],[1,sqrt(2)],[M_18;M_19]};
48. nodes_data(19,:)={19,[27],[1],[M_17]};
49. nodes_data(20,:)={20,[28],[1],[M_20]};
50. nodes_data(21,:)={21,[29],[1],[M_19]};
51. nodes_data(22,:)={22,[30,31],[1,sqrt(2)],[M_23;M_24]};
52. nodes_data(23,:)={23,[25],[1],[M_21]};
53. nodes_data(24,:)={24,[26],[1],[M_14]};
54. nodes_data(25,:)={25,[33],[1],[M_22]};
55. nodes_data(26,:)={26,[25],[1],[M_21]};
56. nodes_data(27,:)={27,[28],[1],[M_20]};
57. nodes_data(28,:)={28,[32],[1],[M_23]};
58. nodes_data(29,:)={29,[30,31],[1,sqrt(2)],[M_23;M_24]};
59. nodes_data(30,:)={30,[35],[1],[M_24]};
60. nodes_data(31,:)={31,[36],[1],[M_25]};
61. nodes_data(32,:)={32,[35],[1],[M_24]};
62. nodes_data(33,:)={33,[34],[1],[M_25]};
63. nodes_data(35,:)={35,[36],[1],[M_25]};
64. %% 始末节点%%
65. node_start=1;
66. node_end=[33,36];
67. %%% 蚁群定义%%%%%
68. m=50; % 蚂蚁数量
69. n=size(nodes_data,1); % 节点数量
70. alpha=1; % 信息素重要程度因子
71. beta=5; % 启发函数重要程度因子
72. Rho=0.5; % 信息素挥发因子
73. Q=1; % 信息素增加强度系数
74. %%迭代过程初始化定义%%%%
75. iter=1; % 迭代次数初值
76. iter_max=100; % 最大迭代次数
77. Route_best=cell(iter_max,1); % 各代最佳路径
78. Length_best=zeros(iter_max,1); % 各代最佳路径长度
79. Length_ave=zeros(iter_max,1); % 各代路径平均长度
80. Place_best=cell(iter_max,1); % 各代最佳路径访问的库所
81. %%将信息素、挥发因子一并放入nodes_data中%%%%%
82. Delta_Tau_initial=nodes_data(:,1:2);
83. for i=1:size(nodes_data,1)
84. nodes_data{i,5}=ones(1,length(nodes_data{i,3})); % 初始信息素均设置为1
85. nodes_data{i,6}=1./nodes_data{i,3}; % 启发函数设置为距离的倒数
86. Delta_Tau_initial{i,3}=zeros(1,length(nodes_data{i,3})); % 信息素变化量均为0
87. end
88. %% 迭代寻找最佳路径%%%
89. while iter<iter_max
90. route=cell(0);
91. place=cell(0);
92. for i=1:m % 逐个蚂蚁进行路劲选择
93. neighbor_allow=cell(0);
94. node_step=node_start;
95. path=node_step;
96. path_M = 0;
97. if node_step==node_start
98. marking=M_1;
99. else
100. marking=nodes_data{node_step,4};
101. end
102. dist=0;
103. while ~isequal(marking(end,:), M_25)
104. neighbor=nodes_data{node_step,2}; % 寻找邻近节点
105. neighbor_allow = [];
106. for k=1:length(neighbor)
107. if ~ismember(neighbor(k),path)
108. neighbor_allow(end+1) = neighbor(k);
109. end
110. end
111. if isempty(neighbor_allow)
112. neighbor_allow=cell(0);
113. node_step=node_start;
114. path=node_step;
115. if node_step==node_start
116. marking=M_1;
117. else
118. marking=nodes_data{node_step,4};
119. end
120. dist=0;
121. continue
122. end
123. P=neighbor_allow; %计算下一个节点的访问概率
124. for k=1:length(neighbor_allow)
125. idx = find(neighbor_allow(k) == nodes_data{node_step,2});
126. P(2,k)=nodes_data{node_step,5}(idx)^alpha*nodes_data{node_step,6}(idx)^beta;
127. end
128. P(2,:)=P(2,:)/sum(P(2,:));
129. %%轮盘赌法选择下一个访问节点%%%%
130. Pc=cumsum(P(2,:));
131. Pc=[0,Pc];
132. randnum=rand;
133. for k=1:length(Pc)-1
134. if randnum>Pc(k)&&randnum<Pc(k+1)
135. target_node=neighbor_allow(k);
136. end
137. end
138. %%%计算单步距离%%%
139. idx=find(nodes_data{node_step,2}==target_node);
140. dist=dist+nodes_data{node_step,3}(idx);
141. %%%更新路径、节点以及标识%%%
142. path(end+1)=target_node; % 更新路径集合
143. marking(end+1,:)=nodes_data{node_step,4}(idx,:); % 更新标识
144. node_step=target_node; % 更新下一个目标节点变迁
145. end
146. Length(i,1)=dist; % 存放第i只蚂蚁的累计距离和对应路径
147. route{i,1}=path;
148. place{i,1}=marking;
149. end
150. %%计算这一代的m只蚂蚁中最短距离和对应路径%%%
151. if iter==1
152. [min_Length,min_index]=min(Length);
153. Length_best(iter)=min_Length;
154. Length_ave(iter)=mean(Length);
155. Route_best{iter,1}=route{min_index,1};
156. Place_best(iter,1)=place(min_index,1);
157. else
158. [min_Length,min_index]=min(Length);
159. Length_best(iter)=min(Length_best(iter-1),min_Length);
160. Length_ave(iter)=mean(Length);
161. if Length_best(iter)==min_Length
162. Route_best{iter,1}=route{min_index,1};
163. Place_best(iter,1)=place(min_index,1);
164. else
165. Route_best{iter,1}=Route_best{iter-1,1};
166. Place_best(iter,1)=Place_best(iter-1,1);
167. end
168. end
169. %%%更新信息素%%%
170. Delta_Tau=Delta_Tau_initial;
171. For i=1:m % 逐个蚂蚁计算
172. for j=1:length(route{i,1})-1
173. node_start_temp=route{i,1}(j);
174. node_end_temp=route{i,1}(j+1);
175. idx=find(Delta_Tau{node_start_temp,2}==node_end_temp);
176. Delta_Tau{node_start_temp,3}(idx)=Delta_Tau{node_start_temp,3}(idx)+Q/Length(i);
177. end
178. end
179. %%考虑挥发因子,更新信息素%%%
180. for i=1:size(nodes_data,1)
181. nodes_data{i,5}=(1-Rho)*nodes_data{i,5}+Delta_Tau{i,3};
182. end
183. iter=iter+1;
184. end
185. % %绘图、结果%%%
186. figure
187. plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r');
188. legend('最短距离','平均距离');
189. xlabel('迭代次数');
190. ylabel('距离');
191. title('各代最短距离与平均距离对比');
192. %% 最优路径%%%
193. [dist_min,idx]=min(Length_best(1:end-1));
194. path_opt=Route_best{idx,1};
195. marking_opt=Place_best{idx,1};
196. %%将marking_opt转为字符输出%%%
197. M_set = cell(0);
198. M_seq = [];
199. for i = 1:size(marking_opt,1)
200. idx = find(marking_opt(i,:) == 1);
201. M_set{i,1} = strcat('M_',num2str(idx));
202. M_seq = [M_seq, strcat(M_set{i,1},',')];
203. end
204. disp('机器人需要走的最短路径长度为:')
205. disp(dist_min)
206. disp('机器人经过的最短路径库所顺序为:')
207. disp(M_seq(1:end-1))
208. disp('机器人经过的最短路径变迁序列为:')
209. disp(path_opt)