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Abstract This paper presents a new scheduling method for a
flexible manufacturing system (FMS) in a Petri net frame-
work. Petri nets can concisely model multiple lot sizes for
each job, the strict precedence constraint, multiple kinds of
resources, and concurrent activities. To decrease the likeli-
hood of rejecting the critical markings, our algorithm adopts
an improved checking method for previous generated
marking. To reduce the computation complexity, an elabo-
rate scheme is applied, which performs A* search locally and
backtracking search globally in the reachability graph of the
Petri net. Some numerical experiments are carried out to
demonstrate usefulness of the algorithm.

Keywords Petri nets - Manufacturing strategy - Scheduling -
Heuristics

1 Introduction

In a manufacturing system, scheduling is a typical
combinatorial optimization problem, which decides start-
ing times and allocations of jobs to be processed. A
desirable method must include two characteristics: (1)
easy formulation of the problem and (2) quick identifi-
cation of semioptimal solutions (with small computation-
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al efforts). So, many industry and research communities
are now focusing on developing methods for solving
real-world flexible manufacturing system (FMS) sched-
uling problems. However, no perfect solution has been
found for all problems, due primarily to the complexity
of FMS scheduling. The general FMS scheduling
problem belongs to one of the NP-hard combinatorial
problems [1] for which the development of optimal
polynomial algorithm is unlikely.

The performance of FMS has been recently studied by
the Petri net community. It is appropriate to select Petri
net-based algorithms for optimization purposes. Despite
their popularity as a modeling tool, Petri nets have not
received much attention for optimization purposes be-
cause of the intractability of their state space [2, 3].
Recent approaches have attempted to use artificial intel-
ligence techniques [3, 4] to selectively search the Petri net
reachability graph using the well-known A* search
algorithm (see Russell and Norvig [5]). The A* search
algorithm presented in [2, 4, 6—9] developed for minimiz-
ing the objective function of flow time of parts in the
system are all derived from the original algorithm
presented in [2]. However, the origin algorithm is not
admissible in certain conditions, i.e., it does not always
guarantee for an optimal solution even with admissible
heuristic function. This problem was also mentioned by
Yu et al. [4] who devised a remedy for this problem. But
the improved method still cannot guarantee not rejecting
markings that lead to the optimal solutions [4].

Another problem observed is the difficulty in finding
an optimal or near-optimal solution in a reasonable
amount of time for a sizable problem. Some improved
algorithms have been introduced to reduce the search
effort. Xiong and Zhou [8] have studied hybrid algo-
rithms combining best-first (BF) and backtracking (BT)
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search methodologies. The A* algorithms which limit the
BT capability of the algorithm by introducing irrevocable
decisions were implemented in [6, 10, 11]. Some hybrid
search algorithms based on the relaxation of the evaluation
scope of an A*-based algorithm have been considered in
[4, 9].

In this paper, we present a hybrid scheduling strategy
based on the timed Petri nets. The search scheme adopts (1)
an improved checking method for previous generated
marking to decrease the likelihood of rejecting the critical
markings and (2) a more elaborate scheme, which performs
BF search locally and BT search globally, than that of
Xiong and Zhou [8]. Then, the scheduling results of the
method are derived and compared with that of algorithm
BF-BT and BT-BF through an example with different sets
of lot sizes. The algorithm is also applied to a set of
randomly generated more complex FMS with such charac-
teristics as buffers with limited sizes, operations with
multiple resources, and jobs with alternative routings.

2 Modeling and scheduling of FMS based on Petri net
structures

A Petri net is defined as a bipartite directed graph
containing places, transitions, and directed arcs connecting
places to transitions and transitions to places. Pictorially,
places are depicted by circles and transitions as bars or
boxes. A place is an input (output) place of a transition if
there exists a directed arc connecting this place (transition)
to the transition (place). A place can contain tokens
pictured by black dots. It may hold either none or a
positive number of tokens. At any given time instance, the
distribution of tokens on places, called Petri net marking,
defines the current state of the modeled system. Thus, a
marked Petri net can be used to study the dynamic behavior
of the modeled discrete event system.

Formally, a Petri net [12, 13] is defined as Z=(P, T, I, O,
mg) where:

P {py, p2, ..., pa}, n>0 is a finite set of places;

T {ti,ty ...t},s>0with PUT =0 and PNT = Dis a
finite set of transitions;

I PxT—{0, 1} is an input function or direct arcs from P
to 7,

O PxT—{0, 1} is an output function or direct arcs from
T to P;

m P—{0,1,2,...} is a |P| dimensional vector with m(p)
being the token count of place p, m is an initial
marking.

In order to simulate the dynamic behavior of a system, a
state or marking in a Petri net is changed according to the
following transition (firing) rules:A transition is enabled if
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m(p)>1(p, f) for any pe P.An enabled transition ¢ can fire at
marking m', and its firing yields a new marking,
m(p) = m'(p) + O(p,t) — I(p,t), for arbitrary p from P.

The marking m is said to be reachable from m'. Given Z
and its initial marking m,, the reachability set is the set of
all marking reachable from m, through various sequences
of transition firings and is denoted by R(Z, mg). For a
marking meR(Z, my), if no transition is enabled in m, then
m is called a deadlock marking, and the corresponding
system is in a deadlock state.

In this paper, we assume that all jobs are available at the
beginning and no new jobs arrive to the system. For these
assumptions, we follow the modeling methodology pre-
sented in [2, 8, 11]. A place represents a resource status or
an operation, a transition represents either the start or
completion of an event or operation process, and the stop
transition for one activity will be the same as the start
transition for the next activity following [2]. Token(s) in a
resource place indicates that the resource is available. A
token in an operation place represents that the operation is
being executed and no token shows none being performed.
A certain time may elapse between the start and the end of
an operation. This is represented by associating timing
information with the corresponding operation place.

An event-driven schedule is searched in a timed Petri
nets framework to achieve minimum or near minimum
makespan. This paper employs deterministic timed Petri
nets by associating time delays with places. The
transitions can be fired with a zero duration which is
consistent with the definition of nontimed Petri nets. In
the Petri net model of a system, firing an enabled
transition changes the token distribution (marking). A
sequence of firings results in a sequence of markings and
all possible behaviors of the system can be completely
tracked by the reachability graph of the net. The search
space for the optimal event sequence is the reachability
graph of the net, and the problem is to find a firing
sequence of the transitions in the Petri net model from
the initial marking to the final one. The A* algorithm
applied to Petri nets was first introduced by Lee and
Dicesare [2]. The A* search is an informed search
algorithm that expands only the most promising branches
of the reachability graph of a timed place Petri net. The
basic algorithm [2] is as follows:

Algorithm 1 (4%)

1 Put the initial marking mg on the list OPEN.

2 If OPEN is empty, terminate with failure.

3 Remove the first marking m from OPEN and put m on
the list CLOSED.

4 1If m is the final marking, construct the optimal path
from the initial marking to the final marking and
terminate.
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5 Find the enabled transitions of the marking m.

6 Generate the next marking, or successor, for each
enabled transition, and set pointers from the next
markings to m. Compute g(m') for every successor m'.

7 For every successor m' of m:

a ifm'is already on OPEN, direct its pointer along the
path yielding the smallest g(m”).

b if m' is already on CLOSED, direct its pointer along
the path yielding the smallest g(m'). if m' requires
pointer redirection, move m' to OPEN.

¢ Calculate #(m') and f(m'), and put m' on OPEN.

8 Reorder OPEN in the increasing magnitude of f.
9 Go to step 2.

The function f{m) in algorithm 1 is calculated from the
following expression: f{m)=g(m)+h(m). g(m) represents
the makespan of the partial schedule determined so far. On
the other hand, A(m), called the heuristic function,
represents an estimate of the remaining cost (makespan)
to reach the marking that represents the goal state m. The
purpose of a heuristic function is to guide the search
process in the most profitable direction by suggesting
which transition to fire first.

If h(m) is a lower bound to all complete solutions
descending from the current marking, i.e.:

h(m) < h*(m), Vm (1)

where /#*(m) is the optimal cost of paths going from the
current marking m to the final one, the /(m) is admissible,
which guarantees for an optimal solution [14].

At each step of the A* search process, the most
promising of the markings generated so far is selected.
This is done by applying an appropriate heuristic
function to each of them. Then, it expands the chosen
marking by firing all enabled transitions under this
marking. If one of successor markings is a final marking,
the algorithm quits. If not, all those new markings are
added to the set of markings generated so far. Again, the
most promising marking is selected and the process
continues. Once the Petri net model of the system is
constructed, given initial and final markings, an optimal
schedule can be obtained using the above algorithm with
admissible heuristic function [2].

3 Checking for previous generated markings

In the above search process, when a new marking is
obtained, as a successor to the node currently explored, it
can be compared with all the markings generated up to that
point. The same markings may represent different paths to
achieve the same state. A condition must be checked to

M=[1,1,0] M=[1,1,0]
Mr=1[4,2,0] Mr=15, 0, 0]

M=[1,1,0]
Mr=10, 0, 0]

Fig. 1 Transition firing description

decide whether the new path is more promising than the
existing one. In algorithm 1, the simple test of comparing
markings and the current makespan does not satisfy this,
thus it may make the algorithm reject the path that leads to
an optimal solution [15].

This problem was also recognized by Yu et al. [4] who
devised a remedy for the problem using the following
alternative makespan cost function to replace g(.) when
comparing markings:

J(M) = g(M) + > 1 /U] 2)

where > # is the sum of the remaining time of the
unavailable tokens and |U,| is the number of the
unavailable tokens (an unavailable token in a place means
that, although the token is not ready yet, it will become
available after a fixed time). However, it still cannot
guarantee not rejecting markings that lead to the optimum
solutions [4].

To address these issues, we have to understand the
process of the timed Petri net state representation. Since the
concept of time delay is associated with places, tokens can
have two possible states. A token in a place p may mean (1)
this token can already be considered as an input token for
any transition that has p as an input place or (2) although
the token is not ready yet, it will become available after a
fixed time (it often happens in the operation places). So, in
the second condition, there exists a time left (z;) for this
kind of tokens to be available. As time passes by, ¢ is
decreased until it reaches zero. When ¢, reaches zero, these

Fig. 2 a BF search on top (shaded area) followed by BT ending and
b BT start (left-to-right arrow) followed by BF ending
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Fig. 3 Perform BF locally and
BT globally

tokens become available. Thus, additional time #; may be
required to actually “reach” m. So, the conditions for path
updating m' = m° A g(m') < g(m®) in step 7a (or m' =
mC Ag(m') < g(mC) in step 7b) of algorithm 1 and m’ =
m® Aj(m') < j(m®) in Yu et al. [4] do not necessarily
imply a new better path from mg to m' (mq is the initial
marking, m® and m® represent a marking on list OPEN or
CLOSED, respectively). In this section, we propose an
alternate checking method that considers markings and
remaining process time of tokens simultaneously for
selecting the better node. To express our method, we need
the definition of timed marking.

Definition 1: timed marking of a timed Petri net A timed
marking m for a timed Petri net is a three-tuple (M, Mr, g)
where:

* M is the marking of both available and unavailable
tokens in the net;

* My is a vector containing remaining process time of
tokens in each place;

+ g is the cost of path to reach M from M.

We use M,,,, Mry,, and g(M,,) to represent the elements of
a time-marking m. Now let us consider the three states of a
timed Petri net where M is the same for these cases (Fig. 1).
Then, if g(M,,)<g(M®) and one by one the values of Mr,,
are not bigger than that of Mr°, it can be established that a
better path between M, and M,, was found (the last
condition is denoted as Mr,,<Mr° in this paper). This is
described in algorithm 2.

Algorithm 2 (improved A*)

1 Place the initial marking m, on the list OPEN.

2 If OPEN is empty, terminate with failure.

3 Remove the first marking m from OPEN and put m on
the list CLOSED.

4 If m is the final marking mj, construct the optimal path
from m back to mg and terminate.

5 Find the set of enabled transitions {#;} (j=1...et(m)). et(m)
is number of enabled transitions when the marking is m.

6 Generate the children markings m’; that would result
from firing each enabled transition # and calculate
g(m}). h(m'). and £ (m’).

7 For each of the marking M';, do the following:

a If m’; is equal to some marking m® already on
OPEN, compare Mr and g. If Mr; > MrOA
g(m’;) > g(m®), go to step 2; If Mr; < MrOA
g(m’;) < g(m°), delete m® from OPEN and insert
m'; on OPEN. Otherwise, insert m’; on OPEN.

b If m’; is equal to some marking m® already on
CLOSED, compare Mr and g. If Mr'; > MrA

Table 1 Scheduling results of

the example for lot size (3, 5, 2, 2) Algorithm Depth of BF orM,,,x  Makespan = Number of markings  CPU time (s)
A* 58 3,437 14
BT 105 85 571
BF-BT 20 94 571 0.65

40 85 1,607 4
50 79 2,123 6
60 74 2,775 8
80 64 3,308 11
BT-BF 20 88 248 0.38
40 80 484 0.8
50 70 1,247 3.6
60 64 1,520 6.5
80 62 1,687 7
A* locally and BT globally 1 75 230 0.17
5 68 358 0.31
10 67 634 0.62
15 65 540 0.46
20 62 946 0.78
25 62 921 0.93
30 60 1,423 1.12
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Table 2 Scheduling results of ]
the example for lot size (8, 8, 4, 4) Algorithm

Depth of BF orM,,,x ~Makespan = Number of markings CPU time (s)

A
BT
BF-BT

BT-BF

A* locally and BT globally

40
60
80
100
120

100 9,438 112
198 145 0.23
168 3,888 24
154 5,234 38
140 7,699 49
127 8,819 90
108 9,233 104
163 585 1.4
140 1,590 7
121 2,873 18
112 4,545 36
104 8,045 76
128 422 0.31
116 570 0.46
111 782 0.62
112 1,047 1.56
109 1,694 2.65
105 1,585 2.03
105 1,780 2.65

g(m'j) > g(mc), go to step 2; If Mr; < MrCA
g(m") < g(m®), delete m® from CLOSED and
insert 72'; on OPEN. Otherwise, insert 7'; on OPEN.

¢ If m’; is not on either list, insert m'; on OPEN.
8 Reorder OPEN in the increasing magnitude of f.
9 Go to step 2.

In this algorithm, when a marking is generated we
compare its values of M, Mr, and g with that of markings
already generated. If it is better than some marking already
on OPEN or CLOSED, we insert it on OPEN and delete the
marking on OPEN or CLOSED. If worse, we directly reject
it. If the quality of the marking cannot be evaluated

Table 3 Scheduling results

Depth of BF orM,,,x  Makespan = Number of markings  CPU time (s)

of the example for lot size Algorithm
(10, 10, 6, 6)
A*
BT
BF-BT
BT-BF

A* locally and BT globally

134 23,092 720
274 193 0.38
206 6,281 64
198 12,341 240
180 16,602 480
169 20,155 540
153 21,797 660
209 1,254 5
181 2,315 16
162 8,495 139
150 11,368 390
148 18,875 560
170 581 0.62
155 809 0.93
146 1,089 1.25
147 1,538 2.50
144 1,889 2.81
142 2,850 5.62
141 2,995 7.03
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temporarily, we insert it on OPEN. This method presents
modifications to the basic algorithm introduced by Lee and
DiCesare [2] and it will not reject the promising markings.
Additional details can be seen in [15].

4 A*-BT Combinations

A* search is optimal and optimally efficient. But for sizable
scheduling problems, it is very difficult to find the optimal
solution in a reasonable amount of time and, in many
problems, A* spends a large amount of time discriminating
among paths whose costs do not vary significantly from each
other [14].

To reduce the memory space and computation time required
by a pure A* strategy, Xiong and Zhou [8] have proposed two
hybrid search methods (BF-BT and BT-BF) which combine
the heuristic A* strategy with the BT strategy based on the
execution of the Petri net. BF-BT is depicted in Fig. 2a where
the A* strategy is applied at the top of the search graph
(represented by the shaded area with the irregular frontier)
and a BT strategy at the bottom (represented by the left-to-
right arrow). As soon as a depth-bound dj, is reached, the BT
search takes over from the best node on OPEN until the
entire graph beneath that node is traversed. Another
algorithm BT-BF is shown in Fig. 2b. Here, BT is employed
at the top of the graph, whereas A* is used at the bottom. BT
is applied until a depth-bound d, is reached. At this point,
instead of backing up, the A* search is started from the node
at dj until it returns a solution or exists with failure.

Because the performance of the BF search is usually
at its best at the bottom of the search graph, BT-BF
performs much better than BF-BT [8]. However, algo-
rithm BT-BF presents two major drawbacks: (1) The
important decisions with respect to the quality of a
schedule may happen at the early stages of the scheduling
activity [8]; this increases the likelihood of missing the
critical candidates for the BT-BF search which employs
BT search instead of BF search at the early stage. (2) The

| —— BF-BT —l—BT-BF —@— Algorithm 3 |
100 [

80 [

60 [

RDGM

40 [

20 [

0 20 40 60 80
RDms

0

Fig. 4 RDGM versus RDms for lot size (5, 5, 2, 2)

@ Springer

| —e—BF-BT ——BT-BF —@— Algorithm 3 |

100 [

0 20 40 60 80
RDms

Fig. 5 RDGM versus RDms for lot size (8, 8, 4, 4)

depth of the solution is usually not known a priori, so it is
hard for the BT-BF strategy to decide where to trigger the
transition from BT to BF is right.

A more elaborate scheme, which performs BF locally
and BT globally, is proposed in this section. It is
depicted in Fig. 3. We begin searching in an A* manner.
At each loop of the search process, we check the number
of nodes on OPEN after all successor nodes have been
generated from the father node. Once it exceeds a
threshold M,,.., we regard all the nodes on OPEN as
direct successors of the root node and submit them to a BT
search. BT selects the best among these successors and
“expands” it using BF search; that is, it submits the chosen
node to a local A* search until the number of nodes on
OPEN exceeds M,,.x again and treats the new nodes on
OPEN as direct successors of the node “expanded.” This
strategy is implemented in algorithm 3.

Algorithm 3 (A* locally and BT globally)

1 i=0.

2 Place the initial marking m, on the list OPEN;,.

3 If i>0, remove the first marking m from list OPEN;,_,
and put m on list OPEN;

4 If OPEN; is empty, check i. If i=0, terminate with
failure. If i>0, go to step 3.

| —&— BF-BT —— BT-BF —@— Algorithm 3

100 -

80

60 -

RDGM
N
o

T

0 20 40 60
RDms

Fig. 6 RDGM versus RDms for lot size (10, 10, 6, 6)

>



Int J Adv Manuf Technol (2010) 48:925-933

931

Fig. 7 a A model for a buffer

with a finite size, b a model for

a job having alternative rout- ° o

. ik R,
ings, and ¢ a model for an L Js

operation with dual resources

Intermedlate
place

z/+1 k ’o

5 Remove the first marking m from list OPEN; and put m
on the list CLOSED,;.

6 If m is the final marking my construct the path from m
back to my and terminate.

7 Find the set of enabled transitions {#;} (j=1...et(m)). et(m)
is number of enabled transitions when the marking is m.

8 Generate the children markings m'; that would result
from firing each enabled transition # and calculate
g{m}). A(m’). and f ().

9 For each of the marking M';, do the following:

a If m’; is equal to some marking m® already on
OPEN;, compare Mr and g. If Mr; > M°OA
g(m’) > g(m®), go to step 4; If Mr;<
Mi®g(m';) < g(mP°), delete m® from OPEN; and
insert m'; on OPEN;. Otherwise, insert m’; on OPEN;.

b If m’; is equal to some marking m® already on
CLOSED,, compare Mr and g. If Mr'; > M A
g(m'j) zg(mc), go to step 4; If Mr'; < MrA
g(m’;) < g(mC), delete m® from CLOSED; and
insert m'; on OPEN,; Otherwise, insert 71'; on OPEN,.

¢ If m’; is not on either list, insert m'; on OPEN,.

10 Reorder OPEN; in the increasing magnitude of f.
11 If the number of nodes on OPEN; exceeds M., i=i+
1 and go to step 3; otherwise, go to step 4.

In summary, this strategy amounts to running an
informed depth-first search where each node expansion is
accomplished by a memory-limited A* search and the
nodes on OPEN are defined as children.

For the example in Xiong and Zhou [8], the three sets of
lot size (5, 5, 2, 2), (8, 8, 4, 4), and (10, 10, 6, 6) are tested.
We employ algorithm 3 with the same admissible heuristic
function s(m) as that in Xiong and Zhou [8]. The code was
written in C# in its entirety. The tests were performed on
personal computers having an AMD Athlon microprocessor
at a speed of 1 GHz with 512 MB of memory. The
scheduling results of makespan, number of generated
markings, and computation time are shown in Tables 1, 2,
and 3 for lot sizes (5, 5, 2, 2), (8, 8, 4, 4), and (10, 10, 6, 6),
respectively. The results for different cases obtained from

Place representing
the size of the buffer

A* search, BT method, and BF-BT and BT-BF algorithms
in Xiong and Zhou [8] are also shown in these tables.

All the algorithms BF-BT, BT-BF, and algorithm 3 cut
down the computation complexity by narrowing the
evaluation scope at the expense of losing the optimality.
The relations of the number of generated markings reduced
versus optimality lost are shown in Figs. 4, 5, and 6 for
three different sets of lot size (5, 5, 2, 2), (8, 8, 4, 4), and
(10, 10, 6, 6) respectively. In these figures, the percentage
of optimality lost, which is the comparison of the make-
span, is equal to:

ms(Hybrid) — ms(A*)

RDms =
e ms(A*)

x 100% (3)

and the percentage of computation complexity reduced,
which is the comparison of the storage (number of
generated markings), is equal to:

GM (A*) — GM(Hybrid)
GM (A*)

From the testing results, the following conclusions are
drawn.

The hybrid heuristic search which employs A* locally
and BT globally in the Petri net reachability graph

RDGM = x 100%. (4)

| ——RDms —s—RDGM —— RDtime |

40

Optimality 20 |,
lost M
0 1 1 \ 2 3 * 2 2

10 20 30 40 50 60

Computation _

complexity
reduced

-80 1

-100

Mmax

Fig. 8 Performance of algorithm 3
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(algorithm 3) performs much better than algorithms BF-BT
and BT-BF. This is due to three reasons. Firstly, the
performance of heuristic BF search is at its best when its
guiding heuristic is more informed, and this usually
happens at the bottom of the search graph [14]. Thus,
algorithm 3 which employs the A* search (BF search)
locally in all stages of the search process greatly reduces the
computation complexity compared with the BF-BT search
which only employs the A* search at the top of the search
graph. Secondly, the important decisions with respect to the
quality of a schedule may happen at the early stages of the
scheduling activity [8]. So algorithm 3 can more greatly
decrease the likelihood of missing the critical candidates
than the BT-BF search that employs the BT search instead
of the A* search at the early stage. Thirdly, algorithm 3
adopts an improved checking method for previous gener-
ated markings and it further decreases the likelihood of
rejecting the critical markings.When M,,,=1, algorithm 3
not only will not degenerate to the BT method, but can still
outperform the BT method. This is due to the fact that the
two algorithms adopt different policies to node generation.
The BT method adopts the last-in-first-out policy to node
generation. When a marking is first selected for expansion,
only one of its enabled transitions is chosen to fire and thus
only one of its successor markings is generated. This newly
generated marking is again submitted for expansion.
However, in algorithm 3 with M,,,=1, after a marking
has been expanded, the best marking of list OPEN is
chosen for the next expansion. Thus, the quality of
markings (even the final marking represents the solution
found) expanded in each step of algorithm 3 with M,,,,=1
is better than that of the BT method.

5 Application to more complex cases

In this section, we test algorithm 3 with more complex
problems which have such characteristics as (1) buffers
with limited sizes, (2) jobs with alternative routings, and
(3) operations with multiple resources. These character-
istics are illustrated in Fig. 7 where O; ; , represents the
Jjth operation of the ith job type being processed with the
kth resource. When the buffer size is finite, the model can
be modified as shown in Fig. 7a. The buffer size is
represented by the number of tokens, e.g., the buffer size
of the model shown in Fig. 7a is three. In Fig. 7b, the jth
operation of job i can be performed by alternative
routings, i.e., by using either resource k or resource r. In
Fig. 7c, the performance of the operation needs multiple
resources, resource k and resource r.

We generated a set of 40 random problems to test the
algorithm. These problems, which were generated by the
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method of randomly selecting and linking predefined
Petri net modules [11], had the following characteristics.
The system had three resources and four different jobs
with three operations each. Seventy-five percent of jobs
had two alternative routings and 40% of operations had
dual resources. Each operation was assigned a random
cost from a uniform distribution (one to 100). The size of
each buffer was limited to one to three and the lot size of
each job was one to three, too.

We solved the same problem set using algorithm 3 with
values of M, of [1, 5, 10, 15...60]. And we compare these
with the results obtained when M, is set to infinity (pure
A* strategy). The scheduling results are summarized in
Fig. 8. The uppermost curve represents the mean percentage
of optimality lost (RDms), the middle curve represents the
mean percentage of search effort reduced (RDGM), and the
lowest curve represents the mean percentage of computational
time reduced (RDtime, which is the comparison of compu-
tational time and is equal to RDtime = %ﬁbﬁd x 100%).
We can see that algorithm 3 can greatly reduce the
computational complexity (number of generated markings
and computational time), and the mean optimality lost is
substantially low, e.g., for M,,.x=30, by average, it explores
33% of nodes less and it executes two times faster than for
M =100, but the RDms is only around 3%.

6 Conclusions

This paper investigates a hybrid scheduling strategy in a
Petri net framework. Timed Petri nets provide an efficient
method for representing concurrent activities, shared
resources, and precedence constraints encountered frequent-
ly in FMS. We use a hybrid heuristic algorithm that
performs A* locally and BT globally in the Petri net
reachability graph to search for a near-optimal schedule of a
simple manufacturing system with different sets of lot sizes.
In order to decrease the likelihood of rejecting the critical
markings, an improved checking method for previous
generated marking is also applied in the algorithm. Finally,
the algorithm is used for a set of more complex FMS
with limited buffer sizes, alternative routings, and dual
resources.

Further work will be conducted in setting different
performance indices such as minimization of tardiness. The
efficiency of the heuristic functions in FMS will also be
investigated.
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