Add files via upload
This commit is contained in:
210
基于Petri网的蚁群算法代码.txt
Normal file
210
基于Petri网的蚁群算法代码.txt
Normal file
@@ -0,0 +1,210 @@
|
||||
附录C 基于蚁群算法的时延库所Petri网路径规划代码
|
||||
1. clc
|
||||
2. clear
|
||||
3. %%初始化标识和节点变迁%%
|
||||
4. nodes_data=cell(0);
|
||||
5. M_1=[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; %网中25个标识对应的符号
|
||||
6. M_2=[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
7. M_3=[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
8. M_4=[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
9. M_5=[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
10. M_6=[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
11. M_7=[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
12. M_8=[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
13. M_9=[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
14. M_10=[0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
15. M_11=[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
16. M_12=[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
17. M_13=[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0];
|
||||
18. M_14=[0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0];
|
||||
19. M_15=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0];
|
||||
20. M_16=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0];
|
||||
21. M_17=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0];
|
||||
22. M_18=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0];
|
||||
23. M_19=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0];
|
||||
24. M_20=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0];
|
||||
25. M_21=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0];
|
||||
26. M_22=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0];
|
||||
27. M_23=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0];
|
||||
28. M_24=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0];
|
||||
29. M_25=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1];
|
||||
30. nodes_data(1,:)={1,[2,3],[1,1],[M_2;M_3]}; %根据变迁的邻近变迁的发生权构造变迁元胞组(其中第二列代表此变迁发生后哪些变迁会发生,第三列代表此变迁到下一个变迁需要走过的路径距离,第四列代表此变迁到下一个变迁之后标识会更新到什么状态)
|
||||
31. nodes_data(2,:)={2,[4,5],[1,sqrt(2)],[M_4;M_5]};
|
||||
32. nodes_data(3,:)={3,[6],[1],[M_6]};
|
||||
33. nodes_data(4,:)={4,[7,8],[sqrt(2),1],[M_7;M_5]};
|
||||
34. nodes_data(5,:)={5,[9,10],[sqrt(2),1],[M_8;M_7]};
|
||||
35. nodes_data(6,:)={6,[11,12],[1,sqrt(2)],[M_9;M_10]};
|
||||
36. nodes_data(7,:)={7,[13,14],[1,1],[M_8;M_13]};
|
||||
37. nodes_data(8,:)={8,[9,10],[sqrt(2),1],[M_8;M_7]};
|
||||
38. nodes_data(9,:)={9,[15],[1],[M_18]};
|
||||
39. nodes_data(10,:)={10,[13,14],[1,1],[M_8;M_13]};
|
||||
40. nodes_data(11,:)={11,[16,17],[1,1],[M_10;M_11]};
|
||||
41. nodes_data(12,:)={12,[18],[1],[M_12]};
|
||||
42. nodes_data(13,:)={13,[15],[1],[M_18]};
|
||||
43. nodes_data(14,:)={14,[23,24],[sqrt(2),1],[M_14;M_15]};
|
||||
44. nodes_data(15,:)={15,[29],[1],[M_19]};
|
||||
45. nodes_data(16,:)={16,[18],[1],[M_12]};
|
||||
46. nodes_data(17,:)={17,[19,20],[1,sqrt(2)],[M_16;M_17]};
|
||||
47. nodes_data(18,:)={18,[21,22],[1,sqrt(2)],[M_18;M_19]};
|
||||
48. nodes_data(19,:)={19,[27],[1],[M_17]};
|
||||
49. nodes_data(20,:)={20,[28],[1],[M_20]};
|
||||
50. nodes_data(21,:)={21,[29],[1],[M_19]};
|
||||
51. nodes_data(22,:)={22,[30,31],[1,sqrt(2)],[M_23;M_24]};
|
||||
52. nodes_data(23,:)={23,[25],[1],[M_21]};
|
||||
53. nodes_data(24,:)={24,[26],[1],[M_14]};
|
||||
54. nodes_data(25,:)={25,[33],[1],[M_22]};
|
||||
55. nodes_data(26,:)={26,[25],[1],[M_21]};
|
||||
56. nodes_data(27,:)={27,[28],[1],[M_20]};
|
||||
57. nodes_data(28,:)={28,[32],[1],[M_23]};
|
||||
58. nodes_data(29,:)={29,[30,31],[1,sqrt(2)],[M_23;M_24]};
|
||||
59. nodes_data(30,:)={30,[35],[1],[M_24]};
|
||||
60. nodes_data(31,:)={31,[36],[1],[M_25]};
|
||||
61. nodes_data(32,:)={32,[35],[1],[M_24]};
|
||||
62. nodes_data(33,:)={33,[34],[1],[M_25]};
|
||||
63. nodes_data(35,:)={35,[36],[1],[M_25]};
|
||||
64. %% 始末节点%%
|
||||
65. node_start=1;
|
||||
66. node_end=[33,36];
|
||||
67. %%% 蚁群定义%%%%%
|
||||
68. m=50; % 蚂蚁数量
|
||||
69. n=size(nodes_data,1); % 节点数量
|
||||
70. alpha=1; % 信息素重要程度因子
|
||||
71. beta=5; % 启发函数重要程度因子
|
||||
72. Rho=0.5; % 信息素挥发因子
|
||||
73. Q=1; % 信息素增加强度系数
|
||||
74. %%迭代过程初始化定义%%%%
|
||||
75. iter=1; % 迭代次数初值
|
||||
76. iter_max=100; % 最大迭代次数
|
||||
77. Route_best=cell(iter_max,1); % 各代最佳路径
|
||||
78. Length_best=zeros(iter_max,1); % 各代最佳路径长度
|
||||
79. Length_ave=zeros(iter_max,1); % 各代路径平均长度
|
||||
80. Place_best=cell(iter_max,1); % 各代最佳路径访问的库所
|
||||
81. %%将信息素、挥发因子一并放入nodes_data中%%%%%
|
||||
82. Delta_Tau_initial=nodes_data(:,1:2);
|
||||
83. for i=1:size(nodes_data,1)
|
||||
84. nodes_data{i,5}=ones(1,length(nodes_data{i,3})); % 初始信息素均设置为1
|
||||
85. nodes_data{i,6}=1./nodes_data{i,3}; % 启发函数设置为距离的倒数
|
||||
86. Delta_Tau_initial{i,3}=zeros(1,length(nodes_data{i,3})); % 信息素变化量均为0
|
||||
87. end
|
||||
88. %% 迭代寻找最佳路径%%%
|
||||
89. while iter<iter_max
|
||||
90. route=cell(0);
|
||||
91. place=cell(0);
|
||||
92. for i=1:m % 逐个蚂蚁进行路劲选择
|
||||
93. neighbor_allow=cell(0);
|
||||
94. node_step=node_start;
|
||||
95. path=node_step;
|
||||
96. path_M = 0;
|
||||
97. if node_step==node_start
|
||||
98. marking=M_1;
|
||||
99. else
|
||||
100. marking=nodes_data{node_step,4};
|
||||
101. end
|
||||
102. dist=0;
|
||||
103. while ~isequal(marking(end,:), M_25)
|
||||
104. neighbor=nodes_data{node_step,2}; % 寻找邻近节点
|
||||
105. neighbor_allow = [];
|
||||
106. for k=1:length(neighbor)
|
||||
107. if ~ismember(neighbor(k),path)
|
||||
108. neighbor_allow(end+1) = neighbor(k);
|
||||
109. end
|
||||
110. end
|
||||
111. if isempty(neighbor_allow)
|
||||
112. neighbor_allow=cell(0);
|
||||
113. node_step=node_start;
|
||||
114. path=node_step;
|
||||
115. if node_step==node_start
|
||||
116. marking=M_1;
|
||||
117. else
|
||||
118. marking=nodes_data{node_step,4};
|
||||
119. end
|
||||
120. dist=0;
|
||||
121. continue
|
||||
122. end
|
||||
123. P=neighbor_allow; %计算下一个节点的访问概率
|
||||
124. for k=1:length(neighbor_allow)
|
||||
125. idx = find(neighbor_allow(k) == nodes_data{node_step,2});
|
||||
126. P(2,k)=nodes_data{node_step,5}(idx)^alpha*nodes_data{node_step,6}(idx)^beta;
|
||||
127. end
|
||||
128. P(2,:)=P(2,:)/sum(P(2,:));
|
||||
129. %%轮盘赌法选择下一个访问节点%%%%
|
||||
130. Pc=cumsum(P(2,:));
|
||||
131. Pc=[0,Pc];
|
||||
132. randnum=rand;
|
||||
133. for k=1:length(Pc)-1
|
||||
134. if randnum>Pc(k)&&randnum<Pc(k+1)
|
||||
135. target_node=neighbor_allow(k);
|
||||
136. end
|
||||
137. end
|
||||
138. %%%计算单步距离%%%
|
||||
139. idx=find(nodes_data{node_step,2}==target_node);
|
||||
140. dist=dist+nodes_data{node_step,3}(idx);
|
||||
141. %%%更新路径、节点以及标识%%%
|
||||
142. path(end+1)=target_node; % 更新路径集合
|
||||
143. marking(end+1,:)=nodes_data{node_step,4}(idx,:); % 更新标识
|
||||
144. node_step=target_node; % 更新下一个目标节点变迁
|
||||
145. end
|
||||
146. Length(i,1)=dist; % 存放第i只蚂蚁的累计距离和对应路径
|
||||
147. route{i,1}=path;
|
||||
148. place{i,1}=marking;
|
||||
149. end
|
||||
150. %%计算这一代的m只蚂蚁中最短距离和对应路径%%%
|
||||
151. if iter==1
|
||||
152. [min_Length,min_index]=min(Length);
|
||||
153. Length_best(iter)=min_Length;
|
||||
154. Length_ave(iter)=mean(Length);
|
||||
155. Route_best{iter,1}=route{min_index,1};
|
||||
156. Place_best(iter,1)=place(min_index,1);
|
||||
157. else
|
||||
158. [min_Length,min_index]=min(Length);
|
||||
159. Length_best(iter)=min(Length_best(iter-1),min_Length);
|
||||
160. Length_ave(iter)=mean(Length);
|
||||
161. if Length_best(iter)==min_Length
|
||||
162. Route_best{iter,1}=route{min_index,1};
|
||||
163. Place_best(iter,1)=place(min_index,1);
|
||||
164. else
|
||||
165. Route_best{iter,1}=Route_best{iter-1,1};
|
||||
166. Place_best(iter,1)=Place_best(iter-1,1);
|
||||
167. end
|
||||
168. end
|
||||
169. %%%更新信息素%%%
|
||||
170. Delta_Tau=Delta_Tau_initial;
|
||||
171. For i=1:m % 逐个蚂蚁计算
|
||||
172. for j=1:length(route{i,1})-1
|
||||
173. node_start_temp=route{i,1}(j);
|
||||
174. node_end_temp=route{i,1}(j+1);
|
||||
175. idx=find(Delta_Tau{node_start_temp,2}==node_end_temp);
|
||||
176. Delta_Tau{node_start_temp,3}(idx)=Delta_Tau{node_start_temp,3}(idx)+Q/Length(i);
|
||||
177. end
|
||||
178. end
|
||||
179. %%考虑挥发因子,更新信息素%%%
|
||||
180. for i=1:size(nodes_data,1)
|
||||
181. nodes_data{i,5}=(1-Rho)*nodes_data{i,5}+Delta_Tau{i,3};
|
||||
182. end
|
||||
183. iter=iter+1;
|
||||
184. end
|
||||
185. % %绘图、结果%%%
|
||||
186. figure
|
||||
187. plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r');
|
||||
188. legend('最短距离','平均距离');
|
||||
189. xlabel('迭代次数');
|
||||
190. ylabel('距离');
|
||||
191. title('各代最短距离与平均距离对比');
|
||||
192. %% 最优路径%%%
|
||||
193. [dist_min,idx]=min(Length_best(1:end-1));
|
||||
194. path_opt=Route_best{idx,1};
|
||||
195. marking_opt=Place_best{idx,1};
|
||||
196. %%将marking_opt转为字符输出%%%
|
||||
197. M_set = cell(0);
|
||||
198. M_seq = [];
|
||||
199. for i = 1:size(marking_opt,1)
|
||||
200. idx = find(marking_opt(i,:) == 1);
|
||||
201. M_set{i,1} = strcat('M_',num2str(idx));
|
||||
202. M_seq = [M_seq, strcat(M_set{i,1},',')];
|
||||
203. end
|
||||
204. disp('机器人需要走的最短路径长度为:')
|
||||
205. disp(dist_min)
|
||||
206. disp('机器人经过的最短路径库所顺序为:')
|
||||
207. disp(M_seq(1:end-1))
|
||||
208. disp('机器人经过的最短路径变迁序列为:')
|
||||
209. disp(path_opt)
|
||||
258
蚁群算法代码.txt
Normal file
258
蚁群算法代码.txt
Normal file
@@ -0,0 +1,258 @@
|
||||
附录B 蚁群算法实现路径规划MATLAB代码
|
||||
1. function main()
|
||||
2. G=[0 0 0 1 0 0;
|
||||
3. 0 1 0 0 0 0;
|
||||
4. 0 1 1 0 1 0;
|
||||
5. 0 0 0 0 1 0;
|
||||
6. 0 1 1 0 1 0;
|
||||
7. 0 0 0 0 0 0;];
|
||||
8. MM=size(G,1); % 总的空间为01矩阵,如果为1表示有障碍物
|
||||
9. Tau=ones(MM*MM,MM*MM); % Tau 初始信息素矩阵
|
||||
10. Tau=8.*Tau;
|
||||
11. K=100; %迭代次数(指蚂蚁出动多少波)
|
||||
12. M=10; %蚂蚁个数
|
||||
13. S=1 ; %最短路径的起始点
|
||||
14. E=MM*MM; %最短路径的目的点
|
||||
15. Alpha=1; % Alpha 表征信息素重要程度的参数
|
||||
16. Beta=5; % Beta 表征启发式因子重要程度的参数
|
||||
17. Rho=0.3 ; % Rho 信息素蒸发系数
|
||||
18. Q=1; % Q 信息素增加强度系数
|
||||
19. minkl=inf;
|
||||
20. mink=0;
|
||||
21. minl=0;
|
||||
22. D=G2D(G);
|
||||
23. N=size(D,1); %N表示问题的规模(像素个数)
|
||||
24. a=1; %小方格像素的边长
|
||||
25. Ex=a*(mod(E,MM)-0.5); %终止点横坐标
|
||||
26. if Ex==-0.5
|
||||
27. Ex=MM-0.5;
|
||||
28. end
|
||||
29. Ey=a*(MM+0.5-ceil(E/MM)); %终止点纵坐标
|
||||
30. Eta=zeros(N); %启发式信息,取为至目标点的直线距离的倒数
|
||||
31. %%%%%%以下为启发式信息矩阵%%%%%%%%%%%
|
||||
32. for i=1:N
|
||||
33. ix=a*(mod(i,MM)-0.5);
|
||||
34. if ix==-0.5
|
||||
35. ix=MM-0.5;
|
||||
36. end
|
||||
37. iy=a*(MM+0.5-ceil(i/MM));
|
||||
38. if i~=E
|
||||
39. Eta(i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;
|
||||
40. else
|
||||
41. Eta(i)=10;
|
||||
42. end
|
||||
43. end
|
||||
44. ROUTES=cell(K,M); %用细胞结构存储每一代的每一只蚂蚁的爬行路线
|
||||
45. PL=zeros(K,M); %用矩阵存储每一代的每一只蚂蚁的爬行路线长度
|
||||
46. %%%%%%%启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁%%%%%%%
|
||||
47. for k=1:K
|
||||
48. for m=1:M
|
||||
49. %%%%%%%%%%%%状态初始化%%%%%%%%%%%%%%%%
|
||||
50. W=S; %当前节点初始化为起始点
|
||||
51. Path=S; %爬行路线初始化
|
||||
52. PLkm=0; %爬行路线长度初始化
|
||||
53. TABUkm=ones(N); %禁忌表初始化
|
||||
54. TABUkm(S)=0; %已经在初始点了,因此要排除
|
||||
55. DD=D; %邻接矩阵初始化
|
||||
56. %%%%%%%%%%%下一步可以前往的节点%%%%%%%%%%
|
||||
57. DW=DD(W,:);
|
||||
58. DW1=find(DW);
|
||||
59. for j=1:length(DW1)
|
||||
60. if TABUkm(DW1(j))==0
|
||||
61. DW(DW1(j))=0;
|
||||
62. end
|
||||
63. end
|
||||
64. LJD=find(DW);
|
||||
65. Len_LJD=length(LJD); %可选节点的个数
|
||||
66. %%%%%%%%%%%%蚂蚁未遇到食物或者陷入死胡同或者觅食停止%%%%%%%%%%%
|
||||
67. while W~=E&&Len_LJD>=1
|
||||
68. %%%%%%%%转轮赌法选择下一步怎么走%%%%%%%%%%%
|
||||
69. PP=zeros(Len_LJD);
|
||||
70. for i=1:Len_LJD
|
||||
71. PP(i)=(Tau(W,LJD(i))^Alpha)*((Eta(LJD(i)))^Beta);
|
||||
72. end
|
||||
73. sumpp=sum(PP);
|
||||
74. PP=PP/sumpp; %建立概率分布
|
||||
75. Pcum(1)=PP(1);
|
||||
76. for i=2:Len_LJD
|
||||
77. Pcum(i)=Pcum(i-1)+PP(i);
|
||||
78. end
|
||||
79. Select=find(Pcum>=rand);
|
||||
80. to_visit=LJD(Select(1));
|
||||
81. %%%%%%%%%%%%状态更新和记录%%%%%%%%%%%%
|
||||
82. Path=[Path,to_visit]; %路径增加
|
||||
83. PLkm=PLkm+DD(W,to_visit); %路径长度增加
|
||||
84. W=to_visit; %蚂蚁移到下一个节点
|
||||
85. for kk=1:N
|
||||
86. if TABUkm(kk)==0
|
||||
87. DD(W,kk)=0;
|
||||
88. DD(kk,W)=0;
|
||||
89. end
|
||||
90. end
|
||||
91. TABUkm(W)=0; %已访问过的节点从禁忌表中删除
|
||||
92. DW=DD(W,:);
|
||||
93. DW1=find(DW);
|
||||
94. for j=1:length(DW1)
|
||||
95. if TABUkm(DW1(j))==0
|
||||
96. DW(j)=0;
|
||||
97. end
|
||||
98. end
|
||||
99. LJD=find(DW);
|
||||
100. Len_LJD=length(LJD); %可选节点的个数
|
||||
101. end
|
||||
102. %%%%记下每一代每一只蚂蚁的觅食路线和路线长度%%%%%
|
||||
103. ROUTES{k,m}=Path;
|
||||
104. if Path(end)==E
|
||||
105. PL(k,m)=PLkm;
|
||||
106. if PLkm<minkl
|
||||
107. mink=k;minl=m;minkl=PLkm;
|
||||
108. end
|
||||
109. else
|
||||
110. PL(k,m)=0;
|
||||
111. end
|
||||
112. end
|
||||
113. %%%%%%%%%%%%%%更新信息素%%%%%%%%%%%%%%%%
|
||||
114. Delta_Tau=zeros(N,N);%更新量初始化
|
||||
115. for m=1:M
|
||||
116. if PL(k,m)
|
||||
117. ROUT=ROUTES{k,m};
|
||||
118. TS=length(ROUT)-1;%跳数
|
||||
119. PL_km=PL(k,m);
|
||||
120. for s=1:TS
|
||||
121. x=ROUT(s);
|
||||
122. y=ROUT(s+1);
|
||||
123. Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;
|
||||
124. Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;
|
||||
125. end
|
||||
126. end
|
||||
127. end
|
||||
128. Tau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分
|
||||
|
||||
129. end
|
||||
130. % 绘图 %
|
||||
131. plotif=1; %是否绘图的控制参数
|
||||
132. if plotif==1 %绘收敛曲线
|
||||
133. minPL=zeros(K);
|
||||
134. for i=1:K
|
||||
135. PLK=PL(i,:);
|
||||
136. Nonzero=find(PLK);
|
||||
137. PLKPLK=PLK(Nonzero);
|
||||
138. minPL(i)=min(PLKPLK);
|
||||
139. end
|
||||
140. figure(1)
|
||||
141. plot(minPL);
|
||||
142. hold on
|
||||
143. grid on
|
||||
144. title('收敛曲线变化趋势');
|
||||
145. xlabel('迭代次数');
|
||||
146. ylabel('最小路径长度'); %绘爬行图
|
||||
147. figure(2)
|
||||
148. axis([0,MM,0,MM])
|
||||
149. for i=1:MM
|
||||
150. for j=1:MM
|
||||
151. if G(i,j)==1
|
||||
152. x1=j-1;y1=MM-i;
|
||||
153. x2=j;y2=MM-i;
|
||||
154. x3=j;y3=MM-i+1;
|
||||
155. x4=j-1;y4=MM-i+1;
|
||||
156. fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);
|
||||
157. hold on
|
||||
158. else
|
||||
159. x1=j-1;y1=MM-i;
|
||||
160. x2=j;y2=MM-i;
|
||||
161. x3=j;y3=MM-i+1;
|
||||
162. x4=j-1;y4=MM-i+1;
|
||||
163. fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);
|
||||
164. hold on
|
||||
165. end
|
||||
166. end
|
||||
167. end
|
||||
168. hold on
|
||||
169. title('最优运动轨迹');
|
||||
170. xlabel('坐标x');
|
||||
171. ylabel('坐标y');
|
||||
172. ROUT=ROUTES{mink,minl};
|
||||
173. LENROUT=length(ROUT);
|
||||
174. Rx=ROUT;
|
||||
175. Ry=ROUT;
|
||||
176. for ii=1:LENROUT
|
||||
177. Rx(ii)=a*(mod(ROUT(ii),MM)-0.5);
|
||||
178. if Rx(ii)==-0.5
|
||||
179. Rx(ii)=MM-0.5;
|
||||
180. end
|
||||
181. Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));
|
||||
182. end
|
||||
183. plot(Rx,Ry)
|
||||
184. end
|
||||
185. plotif2=0; %绘各代蚂蚁爬行图
|
||||
186. if plotif2==1
|
||||
187. figure(3)
|
||||
188. axis([0,MM,0,MM])
|
||||
189. for i=1:MM
|
||||
190. for j=1:MM
|
||||
191. if G(i,j)==1
|
||||
192. x1=j-1;y1=MM-i;
|
||||
193. x2=j;y2=MM-i;
|
||||
194. x3=j;y3=MM-i+1;
|
||||
195. x4=j-1;y4=MM-i+1;
|
||||
196. fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);
|
||||
197. hold on
|
||||
198. else
|
||||
199. x1=j-1;y1=MM-i;
|
||||
200. x2=j;y2=MM-i;
|
||||
201. x3=j;y3=MM-i+1;
|
||||
202. x4=j-1;y4=MM-i+1;
|
||||
203. fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);
|
||||
204. hold on
|
||||
205. end
|
||||
206. end
|
||||
207. end
|
||||
208. for k=1:K
|
||||
209. PLK=PL(k,:);
|
||||
210. minPLK=min(PLK);
|
||||
211. pos=find(PLK==minPLK);
|
||||
212. m=pos(1);
|
||||
213. ROUT=ROUTES{k,m};
|
||||
214. LENROUT=length(ROUT);
|
||||
215. Rx=ROUT;
|
||||
216. Ry=ROUT;
|
||||
217. for ii=1:LENROUT
|
||||
218. Rx(ii)=a*(mod(ROUT(ii),MM)-0.5);
|
||||
219. if Rx(ii)==-0.5
|
||||
220. Rx(ii)=MM-0.5;
|
||||
221. end
|
||||
222. Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));
|
||||
223. end
|
||||
224. plot(Rx,Ry)
|
||||
225. hold on
|
||||
226. end
|
||||
227. end
|
||||
228. function D=G2D(G)
|
||||
229. l=size(G,1);
|
||||
230. D=zeros(l*l,l*l);
|
||||
231. for i=1:l
|
||||
232. for j=1:l
|
||||
233. if G(i,j)==0
|
||||
234. for m=1:l
|
||||
235. for n=1:l
|
||||
236. if G(m,n)==0
|
||||
237. im=abs(i-m);jn=abs(j-n);
|
||||
238. if im+jn==1||(im==1&&jn==1)
|
||||
239. D((i-1)*l+j,(m-1)*l+n)=(im+jn)^0.5;
|
||||
240. end
|
||||
241. end
|
||||
242. end
|
||||
243. end
|
||||
244. end
|
||||
245. end
|
||||
246. end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user